112 research outputs found

    Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets

    Get PDF
    [Background]: The constant increase of aquaculture production and wealthy seafood consumption has forced the industry to explore alternative and more sustainable raw aquafeed materials, and plant ingredients have been used to replace marine feedstuffs in many farmed fish. The objective of the present study was to assess whether plant-based diets can induce changes in the intestinal mucus proteome, gut autochthonous microbiota and disease susceptibility of fish, and whether these changes could be reversed by the addition of sodium butyrate to the diets. Three different trials were performed using the teleostean gilthead sea bream (Sparus aurata) as model. In a first preliminary short-term trial, fish were fed with the additive (0.8%) supplementing a basal diet with low vegetable inclusion (D1) and then challenged with a bacteria to detect possible effects on survival. In a second trial, fish were fed with diets with greater vegetable inclusion levels (D2, D3) and the long-term effect of sodium butyrate at a lower dose (0.4%) added to D3 (D4 diet) was tested on the intestinal proteome and microbiome. In a third trial, the long-term effectiveness of sodium butyrate (D4) to prevent disease outcome after an intestinal parasite (Enteromyxum leei) challenge was tested. [Results]: The results showed that opposed forces were driven by dietary plant ingredients and sodium butyrate supplementation in fish diet. On the one hand, vegetable diets induced high parasite infection levels that provoked drops in growth performance, decreased intestinal microbiota diversity, induced the dominance of the Photobacterium genus, as well as altered the gut mucosal proteome suggesting detrimental effects on intestinal function. On the other hand, butyrate addition slightly decreased cumulative mortality after bacterial challenge, avoided growth retardation in parasitized fish, increased intestinal microbiota diversity with a higher representation of butyrate-producing bacteria and reversed most vegetable diet-induced changes in the gut proteome. [Conclusions]: This integrative work gives insights on the pleiotropic effects of a dietary additive on the restoration of intestinal homeostasis and disease resilience, using a multifaceted approach.This work has been carried out with financial support from the European Union under grant projects ARRAINA (FP7-KBBE-2011-288,925) to JPS, MP and VK and ParaFishControl (H2020-634429) to ASB. Additional funding has been received from Spanish Ministry of Economy and Competitiveness (MINECO) project no. AGL2013- 48560-R to JPS and ASB, and Generalitat Valenciana (PROMETEOII/2014/085) to ASB. MCP was contracted under CSIC PIE project no. 201740E013 and MINECO FPDI-2013-15741, and IE under APOSTD/2016/037 grant by the “Generalitat Valenciana”.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)

    Evolutionary Analysis of Cystatins of Early-Emerging Metazoans Reveals a Novel Subtype in Parasitic Cnidarians

    Get PDF
    © 2021 by the authors.The evolutionary aspects of cystatins are greatly underexplored in early-emerging metazoans. Thus, we surveyed the gene organization, protein architecture, and phylogeny of cystatin homologues mined from 110 genomes and the transcriptomes of 58 basal metazoan species, encompassing free-living and parasite taxa of Porifera, Placozoa, Cnidaria (including Myxozoa), and Ctenophora. We found that the cystatin gene repertoire significantly differs among phyla, with stefins present in most of the investigated lineages but with type 2 cystatins missing in several basal metazoan groups. Similar to liver and intestinal flukes, myxozoan parasites possess atypical stefins with chimeric structure that combine motifs of classical stefins and type 2 cystatins. Other early metazoan taxa regardless of lifestyle have only the classical representation of cystatins and lack multi-domain ones. Our comprehensive phylogenetic analyses revealed that stefins and type 2 cystatins clustered into taxonomically defined clades with multiple independent paralogous groups, which probably arose due to gene duplications. The stefin clade split between the subclades of classical stefins and the atypical stefins of myxozoans and flukes. Atypical stefins represent key evolutionary innovations of the two parasite groups for which their origin might have been linked with ancestral gene chimerization, obligate parasitism, life cycle complexity, genome reduction, and host immunity.This research was funded by the Ministry of Education, Youth, and Sports of the Czech Republic, grant number LTAUSA17201; by the European Commission under the H2020 Programme—ParaFishControl, grant number 634429; by the Czech Science Foundation, grant number 19-28399X (to A. S. Holzer, G. Alama-Bermejo, and J. Kyslík) and 21-16565S and by the Czech Academy of Sciences and Hungarian Academy of Sciences, grant number MTA 19-07. This publication reflects the views of the authors only; the European Commission cannot be held responsible for any use which may be made of the information contained therein

    Evolutionary Analysis of Cystatins of Early-Emerging Metazoans Reveals a Novel Subtype in Parasitic Cnidarians

    Get PDF
    Acknowledgments: We thank to Baveesh Pudhuvai (BC CAS, Budweis, Czech Republic) for help in the PCR verification of Buddenbrockia stefin. We also thank Ivan Fiala (BC CAS, Budweis, Czech Republic) for providing suggestions to improve the manuscript and for sharing M. lieberkuehni and N. pickii transcriptomic data. We are grateful to Hanna Hartikainen (ETH Zurich, Switzerland) for sharing T. bryosalmonae genome data. Funding: This research was funded by the Ministry of Education, Youth, and Sports of the Czech Republic, grant number LTAUSA17201; by the European Commission under the H2020 Programme— ParaFishControl, grant number 634429; by the Czech Science Foundation, grant number 19-28399X (to A. S. Holzer, G. Alama-Bermejo, and J. Kyslík) and 21-16565S and by the Czech Academy of Sciences and Hungarian Academy of Sciences, grant number MTA 19-07. This publication reflects the views of the authors only; the European Commission cannot be held responsible for any use which may be made of the information contained therein.Peer reviewedPublisher PD

    Fish meal-free diets supplemented with health promoters support optimal growth in gilthead sea bream, with benefitial changes in gene expression, intestinal microbiota and improved intestinal disease recovery

    Get PDF
    Trabajo presentado en la International Conference & Exposition Aquaculture Europe, celebrada en Funchal, Maderia (Portugal) del 04 al 07 de octubre de 2021.[Introduction]: The exponential growth of the aquaculture sector requires the development of sustainable aquafeeds with less dependence on marine products. Tolerance to fish meal (FM) and fish oil replacement in the economically important gilthead sea bream (Sparus aurata) is being extensively studied with many products emerging as alternative feed ingredients. It has been demonstrated that alternative diets influence the composition of intestinal adherent microbial populations, which have a key role on host metabolism, health and disease resistance. In addition, low fish meal diets showed an increased susceptibility to enteric parasites (Piazzon et al., 2017). Clearly, differences in diet have an impact on the overall health and metabolism of the fish and many parameters have to be taken into account when studying alternative diets for their use in aquaculture. In this study we evaluated the effect of a novel feed formulation (NoPAP SANA) with total replacement of FM by insect meal and bacterial fermentation biomass, and supplemented with the health-promoter additive SANACORE®GM (Palenzuela et al., 2020), on growth performance, gene expression, intestinal microbiota and disease resistance in gilthead sea bream.[Methods]: Tagged gilthead sea bream of mean weight 21.3 g were distributed in two open-flow tanks (160 fish/tank) and fed ad libitum during 34 days with control or NoPAP SANA diets. Twelve fish/diet were sacrificed and head kidney (HK), liver (L) and posterior intestine (PI) were taken for RNA extraction. From the same fish, the adherent bacteria of PI were collected and immediately used for DNA extraction. RNA from HK, L and PI was used to run three customized PCR-arrays including genes of interest for each tissue, with markers of performance and metabolism (L), immune system (HK and PI), epithelial integrity, nutrient transport and mucins (PI). Using the bacterial DNA, the V3-V4 region of the 16S rRNA of each individual sample was amplified and sequenced by Illumina MiSeq. After quality filtering, taxonomic assignment was performed with a custom-made pipeline using the RDP database. Alpha diversity was calculated using Phyloseq and beta diversity using PERMANOVA and PLS-DA models. Metagenome prediction and pathway analysis were performed using Piphillin. Differential gene expression and OTU presence and abundance correlations were studied using the corrplot R package. From the remaining fish, 70 fish/group were challenged with the intestinal parasite Enteromyxum leei by effluent exposure and the remaining fish were used as controls. The challenge lasted 78 days, including a non-lethal diagnosis sampling at day 40. At the end of the challenge all fish were sampled for histological and molecular diagnosis. Biometric values from all fish were taken in all sampling points.[Results]: A slight decrease in condition factor and specific growth rate was detected in the NoPAP SANA group. However, all fish grew efficiently considering gilthead sea bream standards. NoPAP SANA group showed differential expression of 17 out of 44 genes in L, two out of 29 in HK, and 4 out of 44 in PI. The bacterial composition at the PI showed no major differences in diversity or at the phylum level. However, 29 abundant (>1%) OTUs significantly changed with the diet. From these, 10 OTUs were significantly correlated with differential expression of genes in the different tissues, highlighting Pseudoxanthomonas which was positively correlated with the expression of seven L genes, or Actinomyces, significantly correlated with the expression of L and HK genes (Fig. 1). Inferred metagenome analyses revealed that the altered microbiota with NoPAP SANA diet could account for changes in 15 metabolic pathways. The intensity and prevalence of infection after the parasite challenge was not significantly different between diets. In fact, infected fish from both groups showed similar recovery rates.[Conclusions]: NoPAP SANA promoted good growth parameters and efficient conversions arising as a good alternative for a FMbased diet in gilthead sea bream diets. This diet modulated the expression of several genes in L showing the capacity to reduce lipogenesis, mitochondrial activity and the risk of oxidative stress and, at the same time, promoting an antiinflammatory gene expression profile in HK and PI. Changes were also detected in the adherent bacterial populations of PI, with significant changes of OTUs that could potentially account for significant metabolic alterations. The correlations between presence and abundance of intestinal bacteria with changes in gene expression of different tissues, together with the pathway analysis results, show that microbiota changes can have an impact on host metabolism at a systemic level, and vice versa. Clearly, the changes induced by this novel FM-free diet supported an accelerated growth with an overall feed conversion ratio close to 1 and no increased susceptibility against this intestinal parasite, as often observed in studies when replacing a FM-based diet.GAIN (EU-H2020 #773330); RYC2018-024049-I/AEI/10.13039/50110001103

    A novel fish meal-free diet formulation supports proper growth and does not impair intestinal parasite susceptibility in gilthead sea bream (Sparus aurata) with a reshape of gut microbiota and tissue-specific gene expression patterns

    Get PDF
    The exponential growth of the aquaculture sector requires the development of sustainable aquafeeds with less dependence on marine products. The maximized replacement of fish meal (FM) and fish oil (FO) with plant ingredients has been extensively studied in the economically important species gilthead sea bream (Sparus aurata). Recently, major progress has been done with other alternative raw materials, though some non-pathological inflammatory response persisted with feed formulations that increased the circularity of resource utilization. In the present study, we evaluated the effects on growth performance, gene expression, intestinal microbiota and disease resistance of a FM-free diet (NoPAP SANA), based on plant ingredients, aquaculture by-products, algae oil, insect meal and bacterial fermentation biomasses as main dietary oil and protein sources, and supplemented with a commercially available health-promoting feed additive (SANACORE®GM). Juveniles of 21 g initial body weight were fed control or NoPAP SANA diets for 34 days, and head kidney, liver and posterior intestine were collected for gene expression analyses using customized PCR-arrays. Each tissue-specific PCR covered 96 genes in total and included markers of growth performance, lipid and energy metabolism, antioxidant defence, immune system, and intestinal function and integrity. From the same fish, the adherent bacteria of the posterior intestine were studied by Illumina sequencing of the V3-V4 region of the 16S rRNA. The remaining fish were challenged with the intestinal parasite Enteromyxum leei for 78 days and sampled for parasite diagnosis. Both control and NoPAP SANA fish grew efficiently considering gilthead sea bream standards. Before parasite challenge, the NoPAP SANA group showed differential expression of 17, 2 and 4 genes in liver, head kidney and posterior intestine, respectively. The intestinal bacterial composition showed no major differences in diversity or at the phylum level. However, 29 abundant OTUs significantly changed with the diet. From these, 10 OTUs were significantly correlated with differentially expressed genes in the different target tissues. Inferred metagenome analyses revealed that the altered microbiota with NoPAP SANA diet could account for changes in 15 metabolic pathways. The intensity and prevalence of infection after the parasite challenge did not significantly vary between dietary treatments, and infected fish from both groups showed similar disease outcome. Altogether, these results indicate that the NoPAP SANA diet promoted optimal growth and a healthy condition in gilthead sea bream without affecting susceptibility against the tested intestinal parasite, as often observed with alternative diets following current industry formulations.This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 773330 (GAIN, Green Aquaculture Intensification). This publication reflects the views only of the authors, and the European Commission cannot be held responsible for any use which may be made of the information contained therein. Additional funding was obtained by a Spanish MICINN project (Bream-AquaINTECH, RTI2018–094128-B-I00, AEI/FEDER, UE). M.C·P was funded by a Ramón y Cajal Postdoctoral Research Fellowship (RYC2018-024049-I, co-funded by the European Social Fund & ACOND/2020 Generalitat Valenciana)

    Aquamax: Sustainable aquafeeds to maximize the health effects of farmed fish for consumers

    Get PDF
    Jornada de Divulgación Proyecto Europeo AQUAMAX celebrada en el Instituto de Acuicultura de Torre de la Sal (Castellón) el 24 de noviembre de 2010.El Instituto de Acuicultura Torre de la Sal del CSIC organiza una jornada que tiene como objetivo divulgar la investigación sobre el proyecto europeo AQUAMAX. Este proyecto centra su investigación en reemplazar en lo posible los piensos basados en pescado y el aceite de pescado usado actualmente para alimentar a los peces por recursos alternativos libres de contaminantes. Se conseguiría así maximizar el crecimiento, mejorar la conversión del alimento e incrementar la salud y el bienestar de los peces criados en piscifactorías. Además aumentaría la seguridad y calidad del producto que llega finalmente a los consumidores. La jornada contará con la participación del Doctor S. Kaushik del Instituto Nacional para la Investigación Agronómica de Francia, el Doctor Marc Berntssen del Instituto Nacional de Nutrición e Investigación del Alimento Marino de Noruega y el Profesor Jaume Pérez del Instituto de Acuicultura Torre de la Sal del CSIC. En las diferentes intervenciones se tratarán temas del proyecto AQUAMAX como la calidad de los alimentos, la seguridad en la alimentación, así como diversas investigaciones basadas en las doradas.Peer Reviewe

    Mejora de la competitividad del sector de la dorada (Sparus aurata) a través de la selección genética. PNA PROGENSA-III

    Get PDF
    Trabajo presentado en el XVI Congreso Nacional de Acuicultura, celebrado en Zaragoza (España), del 3 al 5 de octubre de 2017[EN] This project promotes technology developments for gilthead sea bream industrial sector of Spain, to facilitate and normalize the implementation of genetic selection schemes in this species, by defining new technological traits of commercial interest, with new standardized and extensible technological developments that permit, in an economical manner, normalized measuring methods, to study genetic parameters (growth,morphology, carcass and resistance disease), genotype-environment interaction to extend the Spanish production, and guarantee the production levels to the whole production chain. At the same time, improving the breeders management under industrial conditions, the validation of feeding efficiency during the selection processes and location of biomarkers linked and applied in genomic selection.[ES] Con la presente propuesta se pretende desarrollar metodología transferible al sector industrial de dorada en España que facilite y normalice la implementación de esquemas de selección genética en esta especie, mediante la definición de caracteres de interés comercial con nuevos desarrollos tecnológicos que estandaricen y hagan extensible a todo el sector, de manera económica, la medición de caracteres a escala industrial, el estudio de parámetros genéticos para caracteres de interés comercial (crecimiento, morfología, rendimiento y resistencia a enfermedades) en stocks de reproductores de la industria española, la estimación de la interacción genotipo-ambiente para permitir de manera garante la expansión de los rendimientos productivos de la industria Española, la gestión de reproductores bajo los propios condicionantes de la industria, así como la validación de la eficiencia alimenticia de los procesos de selección y búsqueda de biomarcadores asociados y aplicables en los modelos de selección.Este trabajo ha sido financiado a través de las Ayudas a la investigación de los Planes Nacionales de Acuicultura 2016 por el Ministerio de Agricultura y Pesca, Alimentación y Medioambiente (MAPAMA) y el Fondo Europeo Marítimo y de Pesca (FEMP).Peer reviewe

    Parasitic diseases in Mediterranean Aquaculture: Workshop on Epidemiology, Prophylaxis and control of Parasites in Aquaculture

    No full text
    Trabajo presentado en el 9th International Symposium on Fish Parasites (ISFP), celebrado en Valencia (España), del 31 de agosto al 4 de septiembre de 2015Peer reviewe

    Parasites in Aquaculture: A Mediterranean Overview

    No full text
    Trabajo presentado en la NIOF 6th International Conference Coast to Ocean: Prioritary Actions and Investments, celebrada en Aljandría (Egipto) del 12 al 14 de febrero de 2019.Fish aquaculture has increasingly gained relevance in the last decades as an alternative to severely depauperated fisheries stocks. In the Mediterranean region, the production of a few marine species in Western Europe has grown and matured to a sustainable animal production industry generating healthy products with a minimum ecological footprint. However, the optimization of processes at all levels has led to a growing impact of diseases as bottlenecks of production in many cases. Among these, parasite infections can be especially fastidious and their management problematic. Differently to the more mature and monothematic Atlantic Salmon production industry in Northern Europe, the Mediterranean region encompasses many countries and cultures with different traditions related to fish, in which assorted species and production models can be found, and in which parasites can have a relatively higher impact compared to other etiologies. This presentation reviews some of the most relevant parasitic infections in current Mediterranean marine aquaculture, as a way to illustrate the challenges of parasite management in a growing and cost-constrained industry. The multiple research opportunities that can emerge from this activity are highlighted
    corecore